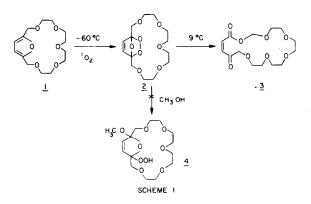
A CROWN OZONIDE AND ITS REARRANGEMENT TO A MACROCYCLIC LACTONE

by

Ben L. Feringa

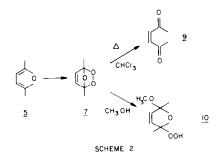
KONINKLIJKE/SHELL-LABORATORIUM, AMSTERDAM


(Shell Research B.V.), The Netherlands

The addition of singlet oxygen to 2,5-furo-18-crown-6 yields a crown ozonide, which rearranges quantitatively to a macrocyclic lactone.

The [2+4]-cycloaddition of singlet oxygen to conjugated dienes is increasingly used as a facile way of introducing oxygen functionalities in a stereo-specific manner into unsaturated hydrocarbon compounds^{1,2}. In our studies of sensitizer-substrate complexation and interaction effects in the photochemical dye-sensitized generation of 10 we investigated the photo-oxidation of furocrown ether <u>1</u>. In this communication we report the preparation of a crown ozonide and the unusual rearrangement that followed the photo-oxidation of <u>1</u>.

The sensitizer Rose Bengal is solubilized in apolar media via complexation to 1^3 . Photooxidation of 2,5-furo-18-crown-6 $(1)^4$ (1.0 mmol) in CHCl₃ or CH₂Cl₂ (2 ml) at 20 °C for 30 minutes with Rose Bengal (0.01 mmol) as the sensitizer afforded macrocylic lactone <u>3</u> (a colourless oil) in quantitative yield⁵. ¹H-NMR (CDCl₃): δ 6.57 (d, J = 12 Hz, 1 H), 6.19 (d, J = 12 Hz, 1 H), 5.41 (s, 2 H, OCH₂O), 4.43 (s, 2 H, OCH₂CO), 3.66 ppm (m, 16 H, CH₂); ¹³C-NMR (CDCl₃): δ 70.9, 76.4 (t), 90.5 (t), 126.8 (d), 140.0 (d), 165.0 (s), 202.1 ppm (s). Lactone <u>3</u> is sensitive to hydrolysis and decomposed upon being chromatographed over alumina.


Photo-oxidations with methylene blue or tetraphenylporphyrin as sensitizer also yielded <u>3</u> as the sole product. The addition of radical scavengers had no effect on the oxidation; 1,4-diazabicyclo[2.2.2]octane, an efficient singlet-oxygen quencher, slowed down the photo-oxidation appreciably.

The formation of lactone 3 must be due to an anomalous ozonide rearrangement⁶ of the singlet-oxygen adduct of 1. This hypothesis was tested by photo-oxygenation of 1 at -60 °C in CDCl₃. ¹H- and ¹³C-NMR revealed that the singlet oxygen [4+2]-adduct 2 was the only product. The ozonide structure 2 was deduced from spectroscopic (Table) and chemical data. To support the ozonide structure of 2 we also photo-oxidized 2,5-dimethylfuran (5) and 2,5-di(methoxymethyl)furan (6) at -60 °C in CHCl₃. The corresponding ozonides $\underline{7}$ and $\underline{8}$ were formed quantitatively (for comparison of spectral data, see Table). Singlet-oxygen additions to furans have been extensively studied by Schenck and co-workers⁷ and the products are generally explained in terms of initial formation of cyclobutadiene ozonides. Relatively stable ozonides have been isolated from the photo-oxidation of 2,5-diphenyl-substituted furans⁸ and recently Adam and co-workers⁹ have demonstrated the intermediacy of unstable alkyl-substituted ozonides by reduction to more stable cyclobutene ozonides. The macrocyclic cyclobutadiene ozonide 2 (a crown ozonide) is stable at temperatures below 0 °C.

On warming the solution of 2^{10} a quantitative rearrangement to the macrocyclic lactone 3 was observed. This rearrangement was followed by NMR spectroscopy and showed first-order kinetics with $k = 2.5 \times 10^{-2} \text{ s}^{-1}$ at 9 °C. Under the same conditions ozonide 7 remained unchanged. At 20 °C, 7 slowly decomposed into 1,2-di-acetylethylene (Scheme 2).

Photo-oxidation of <u>1</u> in methanol as the solvent at -60 $^{\circ}$ C with subsequent heating or at 20 $^{\circ}$ C also yielded lactone <u>3</u> as the only product. No trace of the hydroperoxide <u>4</u>, due to methanol attack on ozonide <u>2</u>, was detected. This is in strong contrast with the formation of <u>10</u> as the sole product of the photo-oxidation of dimethylfuran (<u>5</u>) in methanol (Scheme 2)^{7,8,12}.

The macrocyclic lactone <u>3</u> contains a γ -keto- α , β -unsaturated ester unit and this structural part is common to various natural antibiotic macrolides e.g. vermiculine¹³ and pyrenophorin¹⁴. The mild and selective rearrangement described offers possibilities for an easy introduction of the γ -keto- α , β -unsaturated ester unit into macrocycles¹⁵.

Notes and References

- "Singlet Oxygen, Reactions with Organic Compounds and Polymers", (B. Rånby and J.F. Rabek eds.), John Wiley & Sons, New York, 1978; "Singlet Oxygen", (H.H. Wasserman and R.W. Murray, eds.), Academic Press, New York, 1979.
- G. Ohloff, <u>Fure Applied Chem.</u>, 481 (1975); G.W. Holbert and B. Ganem., <u>J. Amer. Chem. Soc.</u>, <u>100</u>, 352 (1978); D.J. Coughlin, R.S. Brown and R.G. Salomon, <u>J. Amer. Chem. Soc.</u>, <u>101</u>, 1533 (1979).
- 3. R.M. Boden, Synthesis, 783 (1975).
- 4. R.T. Gray, D.N. Reinhoudt, C.J. Smit and J. Veenstra, <u>Rec. Trav. Chim. Pays Bas, 95,</u> 258 (1976).
- 5. All photo-oxidation experiments were performed using a Philips high-pressure mercury-vapour (HPK 125 W) lamp in combination with a potassium chromate liquid filter.
- 5. W.G. Young, A.C.Mc. Kinnis, I.D. Webb and J.D. Roberts, J. Amer. Chem. Soc., <u>68</u>, 293 (1946)
- 7. C.S. Foote, M.T. Wuesthoff, S. Wexler, I.G. Burstain, R. Denny, G.O. Schenck and K.H. Schulte-Elte, <u>Tetrahedron</u>, <u>23</u>, 2583 (1967); K. Gollnick, G.O. Schenck in "1,4-Cycloaddition Reactions", (J. Hamer, ed.), Academic Press, New York, 1967, Chapter 10, p. 255.
- 8. See ref. 1, Chapter 9.
- 9. W. Adam and I. Erden, J. Org. Chem., 43, 2737 (1978); see also: W. Adam and A. Rodriquez, J. Amer. Chem. Soc., 102, 404 (1980).
- 10. The temperature-dependent ¹H NMR spectra as reported for the [2+4]-cycloadduct of <u>1</u> and dimethyl acetylenedicarboxylate¹¹, were not observed for ozonide <u>2</u> (temperatures -80 9 ^oC).
- 11. J.M. Timko, S.S. Moore, D.M. Walba, P.C. Hiberty and D.J. Cram, <u>J. Amer. Chem. Soc.</u>, <u>99</u>, 4207, (1977).
- 12. Addition of methanol to a chloroform solution of <u>7</u> also gives a clean conversion into <u>10</u> with second-order kinetics $(k = 1.81 \times 10^{-3} \text{ mol.l}^{-1} \cdot \text{s}^{-1} \text{ at } 20 \text{ °C}).$

- 13. E.W. Colvin, T.A. Purcell and R.A. Raphael, <u>J. Chem. Soc. Perkin Tr. 1</u>, 1718 (1976).
- 14. E.J. Corey, K.C. Nicolaou and T. Toru, <u>J. Amer. Chem. Soc.</u> <u>97</u>, 2287 (1975).
- 15. We did not observe any significant effects on the photo-oxidation rates of $\underline{1}$ due to complexation of Rose Bengal.

Table: NMR data of ozonides $\underline{2}$, $\underline{7}$ and $\underline{8}$ (CDCl₃, ppm)

¹³ C-NMR	н	· .)	
2	131.3 (= C); 111.9 () (), 62.5	(-CH ₂ O-), 68.3, 69.0, 69.9 (OCH ₂ CH ₂ O)
				, 59.0 (OCH ₃)
I	133.2	, 111.7	,	12.6 (CH ₃).

1 _{H-NMR}	Н	
2	6.61 (s, $=$ C [']), 4.18 (s, CH ₂ O), 4.24 (s, CH ₂ O),	3.68 (m, OCH ₂ CH ₂ O)
<u>8</u>	6.35 (s, $= C'_{u}^{n}$), 4.13 (s, CH_{2}^{0}),	3.54 (s, OCH ₃)
Ţ	6.38 $(s, = C'^{n}),$	1.82 (s, CH ₃)

(Received in UK 26 January 1981)

1446